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Echéance : vendredi 15 novembre 2024
Durée : 90 minutes

2
Tube en rotation

NOM :

PRENOM :

N◦ SCIPER :

SECTION : Mathématiques

SALLE :

L’exercice à rendre comporte un énoncé illustré et détaillé sur la page de gauche et des
questions sur la page de droite. Les développements mathématiques et physiques sont à
effectuer sur les pages quadrillées.

Consignes

• Le formulaire de l’examen (1 page A4 recto-verso) est autorisé.
• L’utilisation de tout appareil électronique est interdite.
• Les réponses sont à retranscrire sur les pointillés sous chaque question dans l’espace réservé à cet

effet.
• Utiliser un stylo à encre noir ou bleu foncé (éviter d’utiliser un crayon) et effacer proprement

avec du correcteur blanc si nécessaire.
• Les feuilles de papier brouillon ne seront pas corrigées.
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2. Tube en rotation
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On considère une centrifugeuse constituée d’un tube tournant dans un plan horizontal avec une vitesse
angulaire constante Ω = Ω ẑ autour de son extrémité située à l’origine O dans le plan horizontal Oxy. Une
bille de masse m, considérée comme un point matériel P , est astreinte à glisser le long du tube.

Pour décrire la dynamique du point matériel, on choisit un repère cylindrique
(
P, ρ̂, ϕ̂, ẑ

)
où le vecteur

unitaire radial ρ̂ est orienté le long de l’axe du tube vers l’extérieur, le vecteur unitaire ϕ̂ est orienté dans
le sens trigonométrique et le vecteur unitaire ẑ est orienté vers le haut. Le point matériel est soumis à une
force de frottement visqueux en régime laminaire,

F f = − m

τ
vρ

où τ est le temps caractéristique de l’amortissement et vρ est la vitesse radiale du point matériel qui est
orientée selon le vecteur ρ̂.

Les réponses doivent être exprimées en termes des grandeurs scalaires données ci-dessus, des coordonnées
cylindriques ρ et z et de leurs dérivées temporelles, des vecteurs de base ρ̂, ϕ̂ et ẑ, de la norme du champ
gravitationnel g et des grandeurs scalaires spécifiées dans l’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suivantes
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1. Déterminer la norme et l’orientation du vecteur accélération de la bille.

Les contraintes géométriques sur la vitesse angulaire azimutale ϕ̇, la coordonnée verticale z et leurs
dérivées temporelles sont les suivantes,

ϕ̇ = Ω = cste ainsi ϕ̈ = 0

z = 0 ainsi ż = 0 et z̈ = 0
(1)

Compte tenu des contraintes géométriques (1), l’accélération en coordonnées cylindriques s’écrit,

a =
(
ρ̈− ρΩ2

)
ρ̂+ 2 ρ̇Ω ϕ̂ (2)

2. Déterminer les forces extérieures exercées sur la bille.

Les forces extérieures exercées sur le point matériel sont son poids P , la force de réaction normale N

et la force de frottement visqueux F f . Compte tenu de la vitesse radiale,

vρ = ρ̇ ρ̂ (3)

ces forces s’expriment en coordonnées cylindriques comme,

P = m g = −mg ẑ et N = Nϕ ϕ̂+Nz ẑ

F f = − m

τ
ρ̇ ρ̂

(4)

3. Déterminer la norme et l’orientation de la force de réaction normale N exercée par le tube sur la bille
en fonction de son mouvement.

La loi vectorielle du mouvement de la bille s’écrit,∑
F ext = P +N + F f = ma (5)

Compte tenu de l’accélération (2) et des forces extérieures (4), la projection de la loi du mouvement (5)
le long des lignes de coordonnées cylindriques donne lieu à trois équations scalaires,

selon ρ̂ : − m

τ
ρ̇ = m

(
ρ̈− ρΩ2

)
(6)

selon ϕ̂ : Nϕ = 2mΩ ρ̇ (7)

selon ẑ : −mg +Nz = 0 (8)

Compte tenu des équations (7) et (8), la force de réaction normale (4) s’écrit explicitement comme,

N = 2mΩ ρ̇ ϕ̂+mg ẑ (9)

4. Dans la limite où la rotation est négligeable par rapport au frottement,

mρΩ2 ≪ m

τ
ρ̇

déterminer l’équation horaire de la coordonnée ρ (t) le long du tube compte tenu des conditions initiales
ρ (0) = 0 et ρ̇ (0) = v0. En déduire l’évolution temporelle du vecteur moment cinétique LO (t) évalué
à l’origine O.

Dans la limite où la rotation est négligeable, l’équation du mouvement radial (6) se réduit à,

ρ̈ = − 1

τ
ρ̇ où ρ̈ =

dρ̇

dt
(10)

qui peut être mise sous la forme suivante,

dρ̇ (t)

ρ̇ (t)
= − dt

τ
(11)
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L’intégration de l’équation différentielle (11) du temps initial t = 0 au temps t s’écrit formellement,∫ ρ̇(t)

v0

dρ̇′ (t′)

ρ̇′ (t′)
= − 1

τ

∫ t

0

dt′ (12)

La solution de l’équation intégrale (12) est,

ln

(
ρ̇ (t)

v0

)
= − t

τ
(13)

d’où l’on tire l’évolution temporelle de la coordonnée de vitesse radiale,

ρ̇ (t) = v0 exp

(
− t

τ

)
(14)

L’intégration de la coordonnée de vitesse radiale (14) multipliée par l’intervalle de temps infinitésimal
du temps initial t = 0 au temps t s’écrit formellement,∫ ρ(t)

0

dρ′ (t′) = v0

∫ t

0

exp

(
− t′

τ

)
dt′ (15)

La solution de l’équation intégrale (15) est,

ρ (t) = v0 τ

(
1− exp

(
− t

τ

))
(16)

Le vecteur moment cinétique de la bille évalué à l’origine s’écrit en coordonnées cylindriques,

LO = r × p = m r × v = m (ρ ρ̂)×
(
ρ̇ ρ̂+ ρΩ ϕ̂

)
= mρ2 Ω ẑ (17)

En substituant l’évolution temporelle (16) de la coordonnée radiale dans l’expression (17) du moment
cinétique en coordonnées cylindriques, on en déduit son évolution temporelle,

LO (t) = mv20 τ
2 Ω

(
1− exp

(
− t

τ

))2

ẑ (18)

5. Dans la limite où le frottement est négligeable par rapport à la rotation,

m

τ
ρ̇ ≪ mρΩ2

déterminer l’équation horaire de la coordonnée ρ (t) le long du tube compte tenu des conditions initiales
ρ (0) = ρ0 et ρ̇ (0) = 0. En déduire l’évolution temporelle du vecteur moment cinétique LO (t) évalué
à l’origine O.

Dans la limite où le frottement est négligeable, l’équation du mouvement radial (6) se réduit à,

ρ̈ (t) = Ω2 ρ (t) (19)

L’équation différentielle (19) du deuxième ordre est équivalente aux équations différentielles du premier
ordre,

ρ̇ (t) = ±Ω ρ (t) (20)

On le montre par itération en dérivant l’équation différentielle (20) par rapport au temps,

ρ̈ (t) = ±Ω ρ̇ (t) = Ω2 ρ (t) (21)

L’équation différentielle (20) peut être mise sous la forme suivante,

dρ (t)

ρ (t)
= ±Ω dt (22)
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L’intégration de l’équation différentielle (22) du temps initial t = 0 au temps t s’écrit formellement,∫ ρ(t)

ρ0

dρ′ (t′)

ρ′ (t′)
= ±Ω

∫ t

0

dt′ (23)

La solution de l’équation intégrale (23) est,

ln

(
ρ (t)

ρ0

)
= ±Ω t (24)

d’où l’on tire deux solutions particulières pour l’évolution temporelle de la coordonnée radiale,

ρ1 (t) = ρ0 exp (Ω t) et ρ2 (t) = ρ0 exp (−Ω t) (25)

La solution générale est une combinaison linéaire des solutions particulières,

ρ (t) = Aρ1 (t) +B ρ2 (t) = Aρ0 exp (Ω t) +B ρ0 exp (−Ω t) (26)

La dérivée temporelle de la solution (26) s’écrit,

ρ̇ (t) = Aρ0 Ωexp (Ω t)− B ρ0 Ωexp (−Ω t) (27)

La condition initiale sur la coordonnée radiale (26) est,

ρ (0) = (A+B) ρ0 = ρ0 (28)

et la condition initiale sur la vitesse radiale (27) est,

ρ̇ (0) = (A− B) ρ0 Ω = 0 (29)

Les conditions initiales (29) et (29) se réduisent au système,

A+B = 1 et A− B = 0 (30)

dont la solution est,

A = B =
1

2
(31)

Compte tenu des coefficients (31), la coordonnée radiale (26) devient,

ρ (t) =
1

2
ρ0

(
exp (Ω t) + exp (−Ω t)

)
= ρ0 cosh (Ω t) (32)

Pour un temps suffisamment grand, i.e. Ω t ≫ 1, en première approximation exp (−Ω t) ≪ exp (Ω t).
Ainsi, la coordonnée radiale se réduit à,

ρ (t) ≃ 1

2
ρ0 exp (Ω t) (33)

En substituant l’évolution temporelle (32) de la coordonnée radiale dans l’expression (17) du moment
cinétique en coordonnées cylindriques, on en déduit son évolution temporelle,

LO (t) =
1

4
mρ20 Ω

(
exp (Ω t) + exp (−Ω t)

)2

ẑ = mρ20 Ω cosh2 (Ω t) ẑ (34)

Pour un temps suffisamment grand, i.e. Ω t ≫ 1, en première approximation exp (−Ω t) ≪ exp (Ω t).
Ainsi, le moment cinétique se réduit à,

LO (t) ≃ 1

4
mρ20 Ω exp (2Ω t) ẑ (35)

y y


