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Tube en rotation

NOM :

PRENOM :

N° SCIPER :

SECTION: Mathématiques
SALLE:

L’exercice a4 rendre comporte un énoncé illustré et détaillé sur la page de gauche et des
questions sur la page de droite. Les développements mathématiques et physiques sont a
effectuer sur les pages quadrillées.

Consignes

e Le formulaire de ’examen (1 page A4 recto-verso) est autorisé.

e [’utilisation de tout appareil électronique est interdite.

e Les réponses sont a retranscrire sur les pointillés sous chaque question dans I’espace réservé a cet
effet.

e Utiliser un stylo a encre noir ou bleu foncé (éviter d’utiliser un crayon) et effacer proprement
avec du correcteur blanc si nécessaire.

e Les feuilles de papier brouillon ne seront pas corrigées.
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2. Tube en rotation

= N

g ~

On considére une centrifugeuse constituée d’un tube tournant dans un plan horizontal avec une vitesse
angulaire constante 2 = Q 2 autour de son extrémité située a ’origine O dans le plan horizontal Oxy. Une
bille de masse m, considérée comme un point matériel P, est astreinte a glisser le long du tube.

Pour décrire la dynamique du point matériel, on choisit un repére cylindrique (R P, QAS, 2) ou le vecteur

unitaire radial p est orienté le long de 'axe du tube vers I'extérieur, le vecteur unitaire ¢ est orienté dans
le sens trigonométrique et le vecteur unitaire 2 est orienté vers le haut. Le point matériel est soumis & une
force de frottement visqueux en régime laminaire,

m

Fi=——vw
f P

ou 7 est le temps caractéristique de l’amortissement et v, est la vitesse radiale du point matériel qui est
orientée selon le vecteur p.

Les réponses doivent étre exprimées en termes des grandeurs scalaires données ci-dessus, des coordonnées

cylindriques p et z et de leurs dérivées temporelles, des vecteurs de base p, (;3 et Z, de la norme du champ
gravitationnel g et des grandeurs scalaires spécifiées dans ’énoncé de chaque question.

Questions et réponses ci-contre, calculs sur les pages quadrillées suitvantes
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1. Déterminer la norme et 'orientation du vecteur accélération de la bille.

Les contraintes géométriques sur la vitesse angulaire azimutale ¢, la coordonnée verticale z et leurs
dérivées temporelles sont les suivantes,

gf) = () = cste ainsi ng =0
z=0 ainsi z2=0 et 2=0

(1)

Compte tenu des contraintes géométriques (1), l'accélération en coordonnées cylindriques s’écrit,
a=(j—pQ)p+2pd 2)

2. Déterminer les forces extérieures exercées sur la bille.

Les forces extérieures exercées sur le point matériel sont son poids P, la force de réaction normale N
et la force de frottement visqueux F'y. Compte tenu de la vitesse radiale,

V,=pp (3)
ces forces s’expriment en coordonnées cylindriques comme,
P=mg=—mg2 et N:N¢$+Nz2
m . (4)
Fr=——pp
T
3. Déterminer la norme et I'orientation de la force de réaction normale IN exercée par le tube sur la bille
en fonction de son mouvement.
La loi vectorielle du mouvement de la bille s’écrit,

> F**=P+N+F;=ma (5)

Compte tenu de 'accélération (2) et des forces extérieures (4), la projection de la loi du mouvement (5)
le long des lignes de coordonnées cylindriques donne lieu a trois équations scalaires,

m
lon p: —p=m(p— p? 6
selon  p —p=m(p—p¥) (6)
selon @¢: Ny=2mQp (7)
selon 2: —mg+ N,=0 (8)

Compte tenu des équations (7) et (8), la force de réaction normale (4) s’écrit explicitement comme,
N=2mQpd+mg2 (9)
4. Dans la limite ou la rotation est négligeable par rapport au frottement,
mpQ2 < g p

déterminer 1’équation horaire de la coordonnée p (¢) le long du tube compte tenu des conditions initiales
p(0) =0 et p(0) = vy. En déduire I’évolution temporelle du vecteur moment cinétique Lo (t) évalué
a origine O.

Dans la limite ou la rotation est négligeable, I’équation du mouvement radial (6) se réduit a,

1 dp
L1 oil . 10
p=——p p= (10)
qui peut étre mise sous la forme suivante,

ap(t) __dt

b T T
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L’intégration de I’équation différentielle (11) du temps initial ¢ = 0 au temps ¢ s’écrit formellement,

o) a7 (¢ t
p(t)f_}/ /
/vo G (12)

La solution de I’équation intégrale (12) est,

In (”J?) =— ; (13)

d’ou l'on tire I’évolution temporelle de la coordonnée de vitesse radiale,

p(0) = exp (1) (14)

L’intégration de la coordonnée de vitesse radiale (14) multipliée par I'intervalle de temps infinitésimal
du temps initial ¢ = 0 au temps ¢ s’écrit formellement,

p(t) t t
/ dp’ (t') = v / exp (— ) dt’ (15)
0 0 T

La solution de I’équation intégrale (15) est,

p(t) = vo T (1 ~ e (— i)) (16)

Le vecteur moment cinétique de la bille évalué a ’origine s’écrit en coordonnées cylindriques,
Lo:rxp:mfrx'u:m(p[))x(pﬁ+p9$)=mp292 (17)

En substituant I’évolution temporelle (16) de la coordonnée radiale dans ’expression (17) du moment
cinétique en coordonnées cylindriques, on en déduit son évolution temporelle,

2
t
Lo (t):mv87'29<1— exp (— )) P (18)
T
. Dans la limite ou le frottement est négligeable par rapport a la rotation,
m .
—p<mpQ?
p
déterminer 1’équation horaire de la coordonnée p (¢) le long du tube compte tenu des conditions initiales
p(0) = po et p(0) = 0. En déduire I’évolution temporelle du vecteur moment cinétique Lo (t) évalué

a origine O.

Dans la limite ou le frottement est négligeable, ’équation du mouvement radial (6) se réduit a,

pt)=%p(t) (19)
L’équation différentielle (19) du deuxiéme ordre est équivalente aux équations différentielles du premier
ordre,

p(t)==+Qp(t) (20)

On le montre par itération en dérivant l’équation différentielle (20) par rapport au temps,

Ft)=+Q5(0) =02 p () (21)
L’équation différentielle (20) peut étre mise sous la forme suivante,

® _ 4 g (22)

p(t)
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L’intégration de I’équation différentielle (22) du temps initial ¢ = 0 au temps ¢ s’écrit formellement,
p(t) do' (¢ t
/ 'f(,)zﬂz/dt’ (23)
Po P (t ) 0

La solution de I’équation intégrale (23) est,

w (2) — 0 (24)

Po

d’ott 'on tire deux solutions particuliéres pour 1’évolution temporelle de la coordonnée radiale,

p1(t) =poexp (2t) et pa(t) = poexp(—01) (25)
La solution générale est une combinaison linéaire des solutions particuliéres,

p(t) =Api(t)+ Bp2(t) = Apoexp (21) + B po exp (— Q1) (26)
La dérivée temporelle de la solution (26) s’écrit,

p(t) = ApoQexp (Qt) — BpoQexp (—Q1) (27)
La condition initiale sur la coordonnée radiale (26) est,

p(0)=(A+B)po=po (28)
et la condition initiale sur la vitesse radiale (27) est,

p(0) = (A= B)p=0 (29)
Les conditions initiales (29) et (29) se réduisent au systéme,

A+B=1 et A-B=0 (30)

dont la solution est,

Compte tenu des coefficients (31), la coordonnée radiale (26) devient,

p(t) = %po(cxp (Qt) + exp (—Qt)) = po cosh (1) (32)

Pour un temps suffisamment grand, i.e. Q¢ > 1, en premiére approximation exp (— Qt) < exp (2t).
Ainsi, la coordonnée radiale se réduit &,

p(t) = 5 o exp (1) (33)

En substituant I’évolution temporelle (32) de la coordonnée radiale dans ’expression (17) du moment
cinétique en coordonnées cylindriques, on en déduit son évolution temporelle,

1 2
Lo(t) = Zmng (exp(Qt) —I—exp(—Qt)) 2 =mp3 Q cosh? (1) 2 (34)

Pour un temps suffisamment grand, i.e. Q¢ > 1, en premiére approximation exp (— Qt) < exp (2t).

Ainsi, le moment cinétique se réduit 4,

Lo (t) ~ ~mp2Qexp (2Qt) 2 (35)

A~ =



